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A hydrodynamic boundary condition is developed for lattice Boltzmann 
hydrodynamics using a square, orthogonal grid. A constraint based on energy 
considerations is developed to provide closure for the equations which govern 
the particle distribution at the boundaries. This boundary condition is applied 
to the two-dimensional, steady flow of an incompressible fluid behind a grid, 
known as Kovasznay flow. The results are compared to those using alternate 
boundary conditions using the known exact solution. The hydrodynamic 
boundary condition produces quadratic spatial convergence, while alternate 
techniques fail to maintain this second-order accuracy. 
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1. INTRODUCTION 

Like its predecessor, lattice gas automata, (1) the lattice Boltzmann method 
(LBM) (2-6~ is a relatively new technique for studying fluid mechanics using 
parallel computers. Schemes based on the LBM have two distinct advan- 
tages over conventional numerical methods: (1) they do not require the 
generation of cumbersome boundary-conforming numerical grids, and (2) 
they are naturally parallelizable and easily executed using massively 
parallel computers. The LBM deserves careful evaluation in view of the 
demonstrated inefficiency of conventional computational schemes, and also 
for its potential in probing novel physical phenomena governed by the 
discrete Boltzmann equation. 

Enthusiasm for the LBM is mitigated, however, by boundary condition 
implementation difficulties. Formally, the accuracy of a given numerical 
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implementation of boundary conditions can be quantified by the slope of 
asymptotic error decay as the numerical grid is refined. The simple "bounce- 
back" boundary condition gives generally first-order accuracy. (7-'~ 
Shordos (~) suggested a finite-difference scheme to impose boundary and 
initial conditions which are formally second-order accurate in space and 
time. Noble et  al. ~2~ recently proposed a rigorous hydrodynamic boundary 
condition which extends the second-order spatial accuracy of the LBM from 
the bulk region to the boundary nodes. 

In Noble e t  aL (~2) the proposed boundary condition was implemented 
successfully for flows involving velocity gradients in a single direction. The 
objective of this work is to develop an additional constraint based on 
energy considerations, and to put this implementation to a severe test by 
focusing on a more complex flow field. The accuracy of the scheme is 
assessed here in two ways: (1) a pr ior i ,  by building a theoretical foundation 
for the proposed boundary condition closure scheme, and (2) a p o s t e r i o r i ,  

by direct comparison of the LBM numerical solution with an exact solu- 
tion of the two-dimensional Navier-Stokes equations for a recirculating 
flow, known as Kovasznay flow. 

2. THEORY 

2.1. Lattice Boltzmann Hydrodynamics 

The lattice Boltzmann method employed in this study uses an 
othogonal, square lattice in which each node has eight nearest neighbors. 
The lattice incorporates horizontal and vertical links of unit length and 
diagonal links of length x/~. A vector is assigned for each direction, 

( 2 z t ( i - 1 )  sin2~(i - 1!) e, = le;I cos ----------ff~, ~ , i = I, 2 ..... 8 (1) 

where lea = 1 for the horizontal and vertical directions ( i=  1, 3, 5, 7) and 
leil = x / ~  for the diagonal directions ( i=2 ,  4, 6, 8). The particle distribu- 
tion f~(x, t) is the probability of finding a particle at location x and time 
t that is moving in direction e~. Also included in the distribution is a rest 
particle contribution f0(x, t). The primary variables, density and velocity, 
are found from this particle distribution according to the relations 

Ef,=p (2) 
i 

~ . f / e , = p u  (3) 
i 
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A measure of the kinetic energy x is also found according to 

�89 ~ (el" ei) f,- = p x  (4 )  
i 

The difference between this microscopic kinetic energy and the energy of 
the macroscopic velocity field is the internal energy e: 

pe ---- �89 ~ ( e l -  u ) 2 f / =  pK -- �89 2 + v 2) (5) 
i 

where u, v are the Cartesian components of the two-dimensional velocity 
field. The present LBM, like lattice gas models, corresponds to a proba- 
bilistic description of the fluid particle microhydrodynamics, based on 
kinetic theory. Equations (2)-(4) represent the first three moments of f 
which follow from the discrete probabilistic formalism associated with a 
discrete lattice, such as that defined in Eq. (1). 

The Boltzmann equation is integrated in the form 

f / ( x  + ei, l +  1 ) = f / ( x ,  t ) + ( 2 , ( f ( x ,  t)) (6) 

The above equation describes the evolution of the particle distribution 
function from two contributions, a collision term and a streaming term. 
The streaming term models the advection of the particle distribution from 
a reference node to its nearest neighbor in the direction of its velocity el. 
The second term (2i represents the local change in the particle distribution 
owing to particle collision. Utilizing the linearized, single-time relaxation 
model of Bhatnagar et alJ TM applied to the lattice Boltzmann, tS) we can 
write the collision operator as 

1 
(2~(f) = - - -  (f~--f~q) (7) 

2" 

Using this simplification, we can write the lattice Boltzmann evoluation 
equation as 

f,-(x + ei, t+  1)=f / (x ,  t )+  1-(f~q(x, t ) - f , . (x ,  t)) 
Z" 

(8) 

Using this technique, we reduce the solution of the fluid equations to two 
major steps. First, in a collision step the distributions undergo relaxation 
toward equilibrium according to the right-hand side of Eq. (7). Second, the 
particle distributions stream to their nearest neighbors. 
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The equilibrium particle distribution is selected so that the continuum 
fluid equations (conservation of mass and momentum) are recovered when 
the Boltzmarm transport equation is truncated to its long-wavelength and 
low-frequency limit. The equilibrium distribution used in this work is 

f~q = p[ ~ -  ](u" u)] (9) 

f~q = p [ ~ +  �89 u) + �89 u )2 -  ~(u. u)], i=  1,3,5,7 (10) 

f~q = p [ ~  + ~(e;" u) + ~(e~" u )2 -  ~(u-  u)], i=2 ,4 ,6 ,  8 (11) 

where f~q is the equilibrium distribution of particles moving in direction i 
and f~q is the equilibrium distribution of rest particles. A recapitulation of 
the theoretical steps involved in the derivation of the LBM is given in the 
following section. 

2.2. Recovery of the Macroscopic Equations by the 
Chapman-Enskog Expansion 

The basic procedure linking the discrete kinetic equation, Eq. (6), to 
the macroscopic equations, following the methodology and terminology of 
Alexander et al. c14) produces an explicit form for the fluid thermophysical 
parameters, such as the viscosity and the speed of sound. A power series 
expansion of the local equilibrium distribution feq in terms of the macro- 
scopic local velocity u, followed by a Taylor series expansion of Eq. (6) to 
second order in space and time, is supplemented by an expansion of the 
particle distribution function around its equilibrium value. This version of 
the Chapman-Enskog expansion generates a hierarchy of kinetic equations 
for the particle distribution function. Forming the first and second moments 
of the first- and second-order kinetic equations and neglecting terms O(lul 3) 
produces the mass and momentum (Navier-Stokes) equations if the coef- 
ficients of the equilibrium distribution are appropriately constrained. For 
the square lattice used here [Eq. (1)], the solution expressed in Eqs. 
(9)-(11) satisfies all the constraints. This distribution is identical with that 
used by SkordosJ I~1 The kinematic viscosity of the fluid v and speed of 
sound cs are given respectively by 

2 r -  1 
v = - -  (12) 

6 

and 

(13) 
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Unlike the case of the hexagonal grid used by Noble e t  al., ~12) there is 
an independent macroscopic energy equation for the square grid employed 
here. However, owing to the lack of extra degrees of freedom [constrained 
by the truncation level in Eqs. (9)-( 11 )], the energy conservation equation, 
complete with Fourier conduction as in Alexander et  al., ~14~ cannot be 
completely recovered. Nevertheless, it is useful, as shown in the following 
section, to examine the energy conservation law implied by our implemen- 
tation of LBM. Forming the third moment of the first- and second-order 
kinetic equations and neglecting terms O(lu13) results in 

"~ 2 e = c" s - -  r c s ( V ,  u)~ + 0 ( ~  2) (14) 

for the steady-state hydrodynamic field, where ~ is a small quantity which 
is proportional to the Knudsen number. This states that for a low Mach 
number and a low Knudsen number, the internal energy is equal to the 
square of the sound speed. This property is exploited to provide closure to 
the problem of defining consistent boundary conditions, as shown in the 
following section. 

2.3. Hydrodynamic Boundary Conditions 

In order to simulate boundary value problems using the lattice 
Boltzmann method, boundary conditions for the particle distribution must 
be developed. The consistent hydrodynamic approach, first proposed by 
Noble et  aL, ~21 seeks to develop a complete set of constraints for the 
particle distribution such that a specified velocity profile is maintained on 
the boundaries. During each time step in the LBM procedure, the collision 
and streaming processes modify the particle distribution at each node. The 
goal of the hydrodynamic approach is to prescribe this process in such a 
fashion that the desired velocity conditions are satisfied at the end of the 
time step. 

The general theory for hydrodynamic boundary conditions for a 
hexagonal lattice has been developed, tl-~ In this work, a constraint based 
on internal energy is developed in order to prescribe the unknown com- 
ponents of the square-lattice particle distribution function. In developing 
the hydrodynamic boundary condition it is helpful to distinguish between 
the three types of lattice nodes involved in a lattice Boltzmann simulation. 
First, nodes which lie wholly within the fluid are termed interior, or fluid 
nodes (denoted by subscript f). Second, nodes which lie just outside of the 
boundary of the fluid domain are termed wall nodes (denoted by subscript 
w). Last, nodes on the boundary between the fluid mass and the wall mass 
are the boundary nodes (denoted by subscript b). Thus, the neighbors of 
a boundary node are classified in three groups: 
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Xb -- er-- b Neighbors of the boundary node which lie within the fluid 

Xb -- eb ~ b Neighbors of the boundary node which lie on the boundary 

Xb -- ew,  b Neighbors of the boundary node which lie within the wall 

where the difference notation represents direction and the eight lattice 
directions are classified in three groups. The notation f---, b is used to 
denote directions from neighboring fluid nodes to the boundary node of 
interest. Likewise, b---, b denotes directions from neighboring boundary 
nodes to the boundary node of interest and w ~ b denotes directions from 
neighboring wall nodes to the boundary node of interest. 

Constraints for the particle distribution on the boundary are derived 
by examining the dependence of the macroscopic quantities at a boundary 
node on the particle distribution. The velocity and density at a boundary 
at the end of a time step are found from the particle distribution at the 
boundary according to the expressions 

p(Xb, t+  1)= ~,fi(Xb, t+  1) (15) 
i 

p(x b, t +  1) u(x b, t +  1) = ~ f,-(Xb, t +  1) .e;  (16) 
i 

This is written as 

p(Xb, t + l ) =  ~ f~(Xb, t + l ) +  ~ f~(Xb, t + l )  (17) 
i = w ~ b  i = f , b ~ b  

p(Xb, t+l )U(Xb,  t + l ) =  ~ f,-(Xb, t + l ) ' e ; +  ~ f/(Xb, t + l ) ' e  , 
i = w ~ b  i = f , b ~ b  

(18) 

where the particle distribution has been separated into two types of con- 
tributions: components which come from wall nodes and components 
which come from fluid or boundary nodes. Solving for the contributions 
from the wall nodes produces 

fi(Xb, t + l ) = p ( x b ,  t + l ) - -  
i = w ~ b  

f i (xb,  t + l ) ' e i = p ( x b ,  t + l )-- 
i = w ~ b  

f i (xb,  t + l )  (19) 
i = f , b ~ b  

f~(x, t + 1)" ei (20) 
i = f , b ~ b  

This form of the boundary condition gives the constraints on the 
unknown components of the particle distribution which are produced by 
the macroscopic velocity and density boundary conditions. Determining 
the individual unknown components of the distribution requires the appli- 
cation of these constraints for a specific lattice and boundary geometry. 
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The nature of the resulting constraint equations is demonstrated for a 
boundary node lying on a vertical boundary for which et is a unit normal 
to the boundary oriented into the fluid. Equations (19)-(20) yield for the 
new time t + 1, 

A + A  + A  = P-- [f0 +f3  +f4  + A  +f6  +f7]  (21) 

f l  q -A  +f8 = pu - [ --f4 - f 5  --f6] (22) 

A - A  = p v -  [A  + A - f 6 - f T ]  (23) 

where u, v are the Cartesian components of the two-dimensional velocity 
field. As previously developed for a hexagonal grid, c]2~ this results in two 
equations, Eqs. (21) and (22), which both constrain the sum of the 
unknown components of the particle distribution, f l  + f 2 + f s .  Thus, if 
these two equations are to be consistent, the density must considered to be 
an unknown quantity. This simply means that stating a specific velocity 
profile along a boundary fixes the density and therefore the pressure along 
the boundary. This is a fortuitous but beneficial result since the density is 
often unknown at the boundary. With the density being a calculated quan- 
tity, however, the system is underconstrained. Equations (21)-(23) repre- 
sent only three equations constraining the four quantities f l ,  f2, f8 and p. 
A fourth constraint is needed to provide closure to this problem. 

Motivated by Eq. (14), closure is provided by maintaining a fixed 
internal energy at the boundary. The internal energy at a boundary at the 
end of a time step is found from 

p(Xb, t +  1) e(Xb, t +  1) 

= p(Xb ,  I + 1 ) K(Xb, t + l ) + l p [ u 2 ( X b ,  t + 1 ) + V2(Xb, t + 1 )] (24) 

where X is the kinetic energy, 

p(Xb, t + 1) X(Xb, t + 1) = �89 ~ (e,-- ei) fi(Xb, t + 1 ) 
i 

This is written as 

(25) 

p(Xb, t + I ) e(Xb, t + 1) + ~:p[u-(Xb, t + 1 ) + v2(xb, t + 1)] 

=�89 ~, (ei 'ei)ff(xb, t + l ) + � 8 9  ~' (ei .e;)fi(xb,  t + l  ) (26) 
i = w ~ b  i = f . b ~ b  

where the particle distribution is again separated into types of contribu- 
tions: components which come from wall nodes and components which 
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come from fluid or boundary nodes. Solving for the contributions from the 
wall nodes produces 

(el. ei) ft-(Xb, t -k- 1 ) 
i=w~b 

= 2p(Xb, t + 1) e(Xb, t + 1) + p[-U2(Xb, t + 1) +/32(Xb, t + 1)] 

- ~ (e,'ei)f,.(Xb, t +  1) (27) 
i=f.b~b 

When applied to the boundary node on a vertical boundary, this constraint 
yields 

f,+2f2+2fs=2pe+p(u2+v2)-[fx+2f4+fs+2f6+f,] (28) 

The system is now fully constrained through Eqs. (21)-(23) and (28). The 
density and unknown components of the particle distribution are found 
using these constraints, which have been developed on the basis of the 
velocity boundary conditions and fixed internal energy. 

2.4. Alternate Boundary Conditions 

Finite-difference-based boundary conditions developed by Skordos I~1 
provide an alternate technique for imposing boundary conditions for lattice 
Boltzmann simulations. The finite-difference-based boundary condition 
includes additional terms in the equilibrium distribution so that the fluid 
viscosity can be modified independently of the relaxation parameter. This 
allows the relaxation parameter to be set to unity, and thus the particle 
distribution is replaced by the modified equilibrium distribution during the 
collision step. In this scheme ctll the normal collision process is used for all 
internal nodes and the modified collision operator is used at the boundaries. 
The net result is that the particle distribution at the boundaries is replaced 
during the collision step by a modified equilibrium distribution of the form 

f~,eq =f~q _2( I  --~) (V" p v) (29) 

1 - r  1 - r  f*~q=f~q+---~[e,'V(ei'pv)]----~(V'pv), i = 1 , 3 , 5 , 7  (30) 

t - ~  1 - r  fi*eq=f~q+---~[ei'V(ei'pv)]-----~(V.pv), i = 2 , 4 , 6 , 8  (31) 

This distribution has terms which involve gradients of density and velocity. 
For general flows where exact expressions for these gradients are unknown, 
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these terms must be evaluated using finite differences. In the simulations 
reported here, second-order accurate asymmetric differences are used at the 
boundaries to evaluate these terms. 

Another alternate boundary condition involves imposing the unmodi- 
fied equilibrium distribution at the boundaries during the collision step. 
The method is expected to be accurate for relaxation parameter values near 
unity, since the collision process simply replaces the particle distribution 
with the equilibrium distribution when the relaxation parameter is set to 
unity. There is no reason to expect, however, that this method will perform 
well for arbitrary values of the relaxation parameter. 

3. RESULTS 

Laminar flow behind a two-dimensional grid, known as Kovasznay 
flow, (~5) is investigated. The exact solution derived by Kovasznay is written 
a s  

u*(x, y) = Uo [1--e-~/L cos (~ - ) ]  (32) 

v*(x,y)=Uo[2e-)"//-sin(~-~)] (33) 

p*(x, y) = 1 ( 1 - e-2)"//.) (34) 
z 

where 
[Re2.~ ~]]/2 Re 

2 =  --~--e ~ 2 (35) 

and the Reynolds number Re is defined as 

UoL Re= (36) 
I/ 

where Uo is the maximum fluid velocity and L is half the vertical length 
of the computational domain. The flow is simulated for the region 

- 1/2 ~< x/L <~ 2. and - 1/2 ~< y/L <~ 3/2. 
From the exact solution it is apparent that the flow is periodic in the y 

direction. Taking advantage of this feature of the solution, we apply periodic 
boundary conditions along the horizontal boundaries of the domain. This is 
accomplished by allowing the particle populations that stream out of the 
domain through the upper or lower surface to reenter on the opposite side. 
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The vertical boundaries are modeled using Dirichlet boundary conditions in 
which the exact solution is imposed at the inlet and outlet. These Dirichlet 
boundary conditions are implemented using the hydrodynamic boundary 
condition (HBC) developed here. For comparison, the flow is also 
simulated using the finite-difference-based boundary condition (FDBC) ~ 
and the equilibrium distribution boundary condition (FEQBC) at the inlet 
and outlet. For all simulations presented here, the density at the boundary 
is calculated based on the velocity-pressure consistency relationship 
expressed in Eqs. (26)-(27). This allows the various methods to be compared 
on an equal basis. An additional consequence is that all three methods 
produce identical results when the relaxation parameter is set to unity. 

Figure 1 shows the steady-state sreamlines for Re = 40 simulated with a 
80 • 64 computational grid utilizing the hydrodynamic boundary condition 
presented here. Two recirculation regions are formed within the computa- 
tional domain, and the flow reattaches and is nearly parallel at the exit of 
the domain. As the Reynolds number increases, the recirculation region 
extends further into the domain. It is also noteworthy that the gradients 
in the x direction decrease with increasing Reynolds number, while the 

1.5" 

1.0- 

~ -  o5t ~ 

0.0 "1 ~ 

o 

-0.5 
I . . . .  I ~ ' ' ' I ' ~ ' ' I ' 0.0 0.5 1.0 1.5 2.0 

Fig. 1. Streamlines for Kovasznay flow simulation using the hydrodynamic boundary condi- 
tion which maintains constant internal energy. The relaxation parameter is r=0.58. The 
resulting maximum error in velocity is Ev = 3.43 x 10-3 with a maximum deviation in internal 
energy of E~. = 8.80 x 10-6 
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gradients in the y direction are independent of flow parameters. Thus, 
this flow can be more accurately simulated computationally for higher 
Reynolds numbers. 

The hydrodynamic boundary condition, the finite-difference-based 
boundary condition, and the equilibrium distribution boundary condition 
are used to simulate Kovasznay flow at small Reynolds number (Re =0.1) 
for 20 x 16, 40 x 32, and 80 x 64 computational grids. The flowfield is 
initialized using the equilibrium particle distribution for stationary flow. 
The boundary conditions are then enforced, and the solution is marched in 
time until steady state is achieved. These calculations are performed using 
the CM-5 at the National Center for Supercomputing Applications. Using 
a 64-node partition, an 80 x 64 domain is simulated for the hydrodynamic 
boundary condition and the equilibrium distribution boundary condition 
in approximately 135,000 time steps and 30 min of cpu time. The finite- 
difference-based boundary condition requires a similar number of time 
steps, but uses about 2.75 times as much time due to the cpu-intensive 
finite-difference operations needed to calculate the modified equilibrium 
distribution. 

When the simulations reach steady state, the error is calculated using 
the exact analytical solution u* and v*. A pointwise relative velocity error 
is defined as 

[ ( u -  u*) 2 + ( v -  v*) 2] 1/2 
E v -  (37) 

Uo 

The relative deviation in the internal energy is computed at each location 
by the formula 

I~-~ol E , -  - -  (38) 
~o 

where 
3 

' g 0 = ~  

is the internal energy for the equilibrium distribution which is used to 
initialize the simulation. The Mach number is defined as the ratio of the 
maximum fluid velocity U0 to the speed of sound G, 

uo Uo M -  (39) 
c s V/3/7 

The accuracy of the simulations, however, is a function of the computa- 
tional Mach number, which is defined relative to the lattice Boltzmann 
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propagation speed c, which is unity in all of  the simulations performed 
here, 

M,. =U~ Uo (40) 
C 

Figures 2-4 show the maximum relative velocity error over the entire 
domain as a function of the maximum fluid velocity or computational 
Mach number for Re = 0.1. Also shown in these figures is the maximum 
relative deviation in the internal energy as a function of the computational 
Mach number. For each trial, the Reynolds number is held constant by 
varying the fluid viscosity in proportion to the maximum fluid velocity. 

These results may be used to assess the accuracy of the lattice 
Boltzmann method when applied to recirculating flows. The simulation 
accuracy is seen to be a function of  the computatonal Mach number, the 
relaxation parameter, and the grid spacing. As previously noted, tll'16) the 
computational Mach number is of  primary importance in lattice Boltzmann 
simulations. When the fluid velocity approaches the microscopic speed, the 
higher order terms in the Chapman-Enskog expansion become important. 
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Fig. 2. Errors in velocity and deviations from constant internal energy using the hydro- 
dynamic boundary condition (HBC), the finite-difference-based boundary condition (FDBC), 
and the equilibrium distribution boundary condition (FEQBC) on a 20 • 16 computational 
grid for Re=0.1. 
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Fig. 3. Errors in velocity and deviations from constant internal energy using the hydro- 
dynamic boundary condition ( H BC), the finite-difference-based boundary condition (FDBC), 
and the equilibrium distribution boundary condition (FEQBC) on a 40 x 32 computational 
grid for R e  = 0.1. 
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Fig. 4. Errors in velocity and deviations from constant internal energy using the hydro- 
dynamic boundary condition (HBC), the finite-difference-based boundary condition (FDBC), 
and the equilibrium distribution boundary condition (FEQBC) on an 80 x 64 computational 
grid for Re=0.1. 
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These terms can no longer be neglected, and therefore the macroscopic 
dynamics of the system fails to simulate the Navier-Stokes equations. 

The relaxation parameter also has a large effect on the accuracy of a 
lattice Boltzmann simulation. When the error due to finite computational 
Mach number is negligible (approximately Mc < 0.01), the error is seen to 
be a strong function of the relaxation parameter with a local minimum in 
the error occurring for r = 1.0. 

The lattice Boltzmann scheme exhibits second-order spatial accuracy 
when using boundary conditions which are at least second-order 
accurate3~2, ~3~ The spatial convergence for these simulations is measured 
by varying the grid size while maintaining a constant Reynolds number 
and viscosity. Figure 5 shows the reduction in error as the grid is refined 
for two values of the relaxation parameter, r = 0.6, 1.5, and a constant 
Reynolds number of 0.1 when using the hydrodynamic boundary condi- 
tion, the finite-difference-based boundary condition, and the equilibrium 
distribution boundary condition. From the slope of these curves it is 
apparent that the second-order accuracy is maintained when using the 
hydrodynamic boundary condition, but suffers greatly when using either of 
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Fig. 5. E r r o r  in veloci ty for  20 x 16, 40 x 32, a n d  80 • 64 c o m p u t a t i o n a l  gr ids  a t  R e  = 0.1 

us ing  the h y d r o d y n a m i c  b o u n d a r y  cond i t i on  ( H B C ) ,  the  f ini te-difference-based b o u n d a r y  
cond i t i on  ( F D B C ) ,  a n d  the equi l ib r ium d i s t r ibu t ion  b o u n d a r y  cond i t i on  ( F E Q B C ) .  
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the alternate methods when z :~ 1. The finite-difference-based method is, 
however, seen to be superior to the equilibrium distribution boundary con- 
dition, which does not exhibit any convergence for r > 1.1. That is, the 
solution is seen to increase as the grid is refined for large values of r when 
using the equilibrium distribution boundary condition. 

The performances of the hydrodynamic boundary condition, the fmite- 
difference-based boundary condition, and equilibrium distribution bound- 
ary condition are examined at moderate Reynolds number. Simulations are 
performed over a range of computational Mach numbers and relaxation 
parameters for R e =  10 on a 80 x 64 computational grid. The maximum 
relative velocity error is plotted as a function of computational Mach 
number in Fig. 6. The behavior is markedly different than that for the same 
grid and lower Reynolds number. In this regime, the computational Mach 
number is the primary source of error in the lattice Boltzmann simulation. 
The error is seen to decrease rapidly as the fluid velocity is decreased. Also, 
the effect of the relaxation parameter is no longer dominant. In fact, there 
is no perceptible advantage to using r = 1.0 in this moderate computational 
Mach number regime when using either the hydrodynamic boundary con- 
dition or the finite-difference-based boundary condition. The simulations 
using the hydrodynamic boundary condition are more accurate for any 
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Fig. 6. Errors in velocity and deviations from constant internal energy using the hydro- 
dynamic boundary condition (HBC), the finite-difference-based boundary condition (FDBC), 
and the equilibrium distribution boundary condition (FEQBC) on an 80 • 64 computational 
grid for Re = 10. 
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given value of the relaxation parameter than simulations using the alter- 
native boundary conditions. 

Assessment of the spatial dependence of the error is also possible. 
Although the specific distribution depends on the boundary conditions and 
the flow parameters, general trends pervade all runs. In all simulations and 
for all boundary conditions, the error in both components of velocity and 
the fluctuations in internal energy are, like the exact solution, periodic 
functions in y. The velocity error is zero on the inlet and outlet planes 
where the exact solution is enforced, and when using the hydrodynamic 
boundary condition or equilibrium distribution boundary condition, the 
internal energy error is also zero. The amplitude of the errors increases 
rapidly, however, and the maximum amplitude occurs a short distance 
from the inlet plane ( -0 .5  < x < -0.2). The error then decays quickly with 
increasing x in a manner similar to the exponential decay of the velocity 
gradients. 

4. CONCLUSION 

In this work, a hydrodynamic boundary condition for the lattice 
Boltzmann method applied to a square, orthogonal grid is developed. The 
hydrodynamic lattice Boltzmann method is shown theoretically to maintain 
constant internal energy under steady flow conditions. Using this constraint, 
in addition to those supplied by conservation of mass and momentum, 
we develop a complete set of simultaneous equations for prescribing the 
particle distribution at the boundary in terms of the velocity boundary con- 
ditions. The density (which is directly related to the pressure) is determined 
solely from the velocity boundary conditions; an additional explicit density 
boundary condition is not needed. The hydrodynamic boundary condition 
is applied to the recirculating Kovasznay flow for which an exact solution 
is available, and the results are compared with those using two alternate 
boundary conditions. The hydrodynamic boundary condition produces 
greater accuracy than the alternate methods and maintains second-order 
spatial convergence as the grid is refined. 
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